

 Phoenix Live-Reload

 v1.6.1

 Table of contents

 	README

 	Changelog

 	
 Modules

 	Phoenix.LiveReloader

 	Phoenix.LiveReloader.Application

 	Phoenix.LiveReloader.Channel

 	Phoenix.LiveReloader.Socket

 README

A project for live-reload functionality for Phoenix during development.
Usage
You can use phoenix_live_reload in your projects by adding it to your mix.exs dependencies:
def deps do
 [{:phoenix_live_reload, "~> 1.5"}]
end
You can configure the reloading interval in ms in your config/dev.exs:
Watch static and templates for browser reloading.
config :my_app, MyAppWeb.Endpoint,
 live_reload: [
 interval: 1000,
 patterns: [
 ...
The default interval is 100ms.
Streaming serving logs to the web console
Note: This feature is only available for Elixir v1.15+

Streaming server logs that you see in the terminal when running mix phx.server can be useful to have on the client during development, especially when debugging with SPA fetch callbacks, GraphQL queries, or LiveView actions in the browsers web console. You can enable log streaming to collocate client and server logs in the web console with the web_console_logger configuration in your config/dev.exs:
config :my_app, MyAppWeb.Endpoint,
 live_reload: [
 interval: 1000,
 patterns: [...],
 web_console_logger: true
]
Next, you'll need to listen for the "phx:live_reload:attached" event and enable client logging by calling the reloader's enableServerLogs() function, for example:
window.addEventListener("phx:live_reload:attached", ({detail: reloader}) => {
 // enable server log streaming to client.
 // disable with reloader.disableServerLogs()
 reloader.enableServerLogs()
})
Jumping to HEEx function definitions
Many times it's useful to inspect the HTML DOM tree to find where markup is being rendered from within your application. HEEx supports annotating rendered HTML with HTML comments that give you the file/line of a HEEx function component and caller. :phoenix_live_reload will look for the PLUG_EDITOR environment export (used by the plug debugger page to link to source code) to launch a configured URL of your choice to open your code editor to the file-line of the HTML annotation. For example, the following export on your system would open vscode at the correct file/line:
export PLUG_EDITOR="vscode://file/__FILE__:__LINE__"
The vscode:// protocol URL will open vscode with placeholders of __FILE__:__LINE__ substituted at runtime. Check your editor's documentation on protocol URL support. To open your configured editor URL when an element is clicked, say with alt-click, you can wire up an event listener within your "phx:live_reload:attached" callback and make use of the reloader's openEditorAtCaller and openEditorAtDef functions, passing the event target as the DOM node to reference for HEEx file:line annotation information. For example:
window.addEventListener("phx:live_reload:attached", ({detail: reloader}) => {
 // Enable server log streaming to client. Disable with reloader.disableServerLogs()
 reloader.enableServerLogs()

 // Open configured PLUG_EDITOR at file:line of the clicked element's HEEx component
 //
 // * click with "c" key pressed to open at caller location
 // * click with "d" key pressed to open at function component definition location
 let keyDown
 window.addEventListener("keydown", e => keyDown = e.key)
 window.addEventListener("keyup", e => keyDown = null)
 window.addEventListener("click", e => {
 if(keyDown === "c"){
 e.preventDefault()
 e.stopImmediatePropagation()
 reloader.openEditorAtCaller(e.target)
 } else if(keyDown === "d"){
 e.preventDefault()
 e.stopImmediatePropagation()
 reloader.openEditorAtDef(e.target)
 }
 }, true)
 window.liveReloader = reloader
})
Backends
This project uses FileSystem as a dependency to watch your filesystem whenever there is a change and it supports the following operating systems:
	Linux via inotify (installation required)
	Windows via inotify-win (no installation required)
	Mac OS X via fsevents (no installation required)
	FreeBSD/OpenBSD/~BSD via inotify (installation required)

There is also a :fs_poll backend that polls the filesystem and is available on all Operating Systems in case you don't want to install any dependency. You can configure the :backend in your config/config.exs:
config :phoenix_live_reload,
 backend: :fs_poll
By default the entire application directory is watched by the backend. However, with some environments and backends, this may be inefficient, resulting in slow response times to file modifications. To account for this, it's also possible to explicitly declare a list of directories for the backend to watch (they must be relative to the project root, otherwise they are just ignored), and additional options for the backend:
config :phoenix_live_reload,
 dirs: [
 "priv/static",
 "priv/gettext",
 "lib/example_web/live",
 "lib/example_web/views",
 "lib/example_web/templates",
 "../another_project/priv/static", # Contents of this directory is not watched
 "/another_project/priv/static", # Contents of this directory is not watched
],
 backend: :fs_poll,
 backend_opts: [
 interval: 500
]
Skipping remote CSS reload
All stylesheets are reloaded without a page refresh anytime a style is detected as having changed. In certain cases such as serving stylesheets from a remote host, you may wish to prevent unnecessary reload of these stylesheets during development. For this, you can include a data-no-reload attribute on the link tag, ie:
<link rel="stylesheet" href="http://example.com/style.css" data-no-reload>
Differences between Phoenix.CodeReloader
Phoenix.CodeReloader recompiles code in the lib directory. This means that if you change anything in the lib directory (such as a context) then the Elixir code will be reloaded and used on your next request.
In contrast, this project adds a plug which injects some JavaScript into your page with a WebSocket connection to the server. When you make a change to anything in your config for live_reload (JavaScript, stylesheets, templates and views by default) then the page will be reloaded in response to a message sent via the WebSocket. If the change was to an Elixir file then it will be recompiled and served when the page is reloaded. If it is JavaScript or CSS, then only assets are reloaded, without triggering a full page load.
License
Same license as Phoenix.

 Changelog

1.6.1 (2025-08-31)
	Enhancements	Set :phoenix_live_reload private field to downstream instrumentation
	Add @import directive support to CSS reload strategy

1.6.0 (2025-04-10)
	Enhancements
	Add support for __RELATIVEFILE__ when invoking editors
	Change the default target window to :parent to not reload the whole page if a Phoenix app is shown inside an iframe. You can get the old behavior back by setting the :target_window option to :top:config :phoenix_live_reload, MyAppWeb.Endpoint,
 target_window: :top,
 ...

	Bug fixes
	Inject iframe if web console logger is enabled but there are no patterns
	Allow web console to shutdown cleanly

1.5.3 (2024-03-27)
	Bug fixes	Fix warnings on earlier Elixir versions
	Use darkcyan for log levels

1.5.2 (2024-03-11)
	Bug fixes	Fix CSS updates failing with errors
	Fix logging errors caused by unknown server log types

1.5.1 (2024-02-29)
	Bug fixes	Fix regression on Elixir v1.14 and earlier

1.5.0 (2024-02-29)
	Improvements	Introduce streaming server logs to the browser's web console with the new :web_console_logger endpoint configuration
	Introduce openEditorAtCaller and openEditorAtDef client functions for opening the developer's configured PLUG_EDITOR to the elixir source file/line given a DOM element
	Dispatch "phx:live_reload:attached" to parent window when live reload is attached to server and awaiting changes

1.4.1 (2022-11-29)
	Improvements	Support new :notify configuration for third-party integration to file change events

1.4.0 (2022-10-29)
	Improvements	Allow reload events to be debounced instead of triggered immediately
	Add option to trigger full page reloads on css changes

	Bug fixes	Handle false positives on </body> tags

1.3.3 (2021-07-06)
	Improvements	Do not attempt to fetch source map for phoenix.js

1.3.2 (2021-06-21)
	Improvements	Allow reload :target_window to be configured

1.3.1 (2021-04-12)
	Bug fixes	Use width=0 and height=0 on iframe

1.3.0 (2020-11-03)
This release requires Elixir v1.6+.
	Enhancements
	Use hidden attribute instead of style="display: none"
	Fix warnings on Elixir v1.11

	Deprecations
	:iframe_class is deprecated in favor of :iframe_attrs

1.2.4 (2020-06-10)
	Bug fixes	Fix a bug related to improper live reload interval

1.2.3 (2020-06-10)
	Enhancements	Support the iframe_class option for live reload

1.2.2 (2020-05-13)
	Enhancements	Support the suffix option

1.2.1 (2019-05-24)
	Enhancements	Allow custom file_system backend options

1.2.0 (2018-11-07)
	Enhancements	Support Phoenix 1.4 transport changes

1.1.7 (2018-10-10)
	Enhancements	Relax version requirements to support Phoenix 1.4

1.1.6 (2018-09-28)
	Enhancements	Allow file system watcher backend to be configured
	Add :fs_poll backend as fallback for generic OS support

1.1.5
	Bug fix	Use proper default interval of 100ms

1.1.4
	Enhancements
	Support :interval configuration for cases where the live reloading was triggering too fast

	Bug fix
	Support IE11
	Fix CSS reloading in iframe

1.1.3 (2017-09-25)
	Bug fix	Do not return unsupported :ignore from live channel

1.1.2 (2017-09-25)
	Enhancements	Improve error messages

1.1.1 (2017-08-27)
	Enhancements
	Bump :file_system requirement

	Bug fixes
	Do not raise when response has no body

1.1.0 (2017-08-10)
	Enhancements	Use :file_system for file change notifications for improved reliability

1.0.8 (2017-02-01)
	Enhancements	Revert to :fs 0.9.1 to side-step rebar build problems

1.0.7 (2017-01-18)
	Enhancements	Update to latest :fs 2.12

1.0.6 (2016-11-29)
	Bug fixes	Remove warnings on Elixir v1.4
	Do not try to access the endpoint if it is no longer loaded

1.0.5 (2016-05-04)
	Bug fixes	Do not include hard earmark requirement

1.0.4 (2016-04-29)
	Enhancements	Support Phoenix v1.2

1.0.3 (2016-01-11)
	Enhancements	Log whenever a live reload event is sent

1.0.2 (2016-01-07)
	Bug fixes	Fix issue where iframe path did not respect script_name

1.0.1 (2015-09-18)
	Bug fixes	Fix issue causing stylesheet link taps to duplicate on reload

Phoenix.LiveReloader

Router for live-reload detection in development.
Usage
Add the Phoenix.LiveReloader plug within a code_reloading? block
in your Endpoint, ie:
if code_reloading? do
 socket "/phoenix/live_reload/socket", Phoenix.LiveReloader.Socket
 plug Phoenix.CodeReloader
 plug Phoenix.LiveReloader
end
Configuration
All live-reloading configuration must be done inside the :live_reload
key of your endpoint, such as this:
config :my_app, MyApp.Endpoint,
 ...
 live_reload: [
 patterns: [
 ~r{priv/static/.*(js|css|png|jpeg|jpg|gif)$},
 ~r{lib/my_app_web/views/.*(ex)$},
 ~r{lib/my_app_web/templates/.*(eex)$}
]
]
The following options are supported:
	:patterns - a list of patterns to trigger the live reloading.
This option is required to enable any live reloading.

	:notify - a keyword list of topics pointing to a list of patterns.
A message of the form {:phoenix_live_reload, topic, path} will be
broadcast on the topic whenever file in the list of patterns changes.

	:debounce - an integer in milliseconds to wait before sending
live reload events to the browser. Defaults to 0.

	:iframe_attrs - attrs to be given to the iframe injected by
live reload. Expects a keyword list of atom keys and string values.

	:target_window - the window that will be reloaded, as an atom.
Valid values are :top and :parent. Defaults to :parent.

	:url - the URL of the live reload socket connection. By default
it will use the browser's host and port.

	:suffix - if you are running live-reloading on an umbrella app,
you may want to give a different suffix to each socket connection.
You can do so with the :suffix option:
live_reload: [
 suffix: "/proxied/app/path"
]
And then configure the endpoint to use the same suffix:
if code_reloading? do
 socket "/phoenix/live_reload/socket/proxied/app/path", Phoenix.LiveReloader.Socket
 ...
end

	:reload_page_on_css_changes - If true, CSS changes will trigger a full
page reload like other asset types instead of the default hot reload.
Useful when class names are determined at runtime, for example when
working with CSS modules. Defaults to false.

	:web_console_logger - If true, the live reloader will log messages
to the web console in your browser. Defaults to false.
Note: Requires Elixir v1.15+ and your application javascript bundle will need
to enable logs. See the README for more information.

In an umbrella app, if you want to enable live reloading based on code
changes in sibling applications, set the reloadable_apps option on your
endpoint to ensure the code will be recompiled, then add the dirs to
:phoenix_live_reload to trigger page reloads:
in config/dev.exs
root_path =
 __ENV__.file
 |> Path.dirname()
 |> Path.join("..")
 |> Path.expand()

config :phoenix_live_reload, :dirs, [
 Path.join([root_path, "apps", "app1"]),
 Path.join([root_path, "apps", "app2"]),
]
You'll also want to be sure that the configured :patterns for
live_reload will match files in the sibling application.

 Summary

 Functions

 call(conn, _)

 Callback implementation for Plug.call/2.

 init(opts)

 Callback implementation for Plug.init/1.

 Functions

 call(conn, _)

Callback implementation for Plug.call/2.

 init(opts)

Callback implementation for Plug.init/1.

Phoenix.LiveReloader.Application

 Summary

 Functions

 start(type, args)

 Callback implementation for Application.start/2.

 start_link()

 Functions

 start(type, args)

Callback implementation for Application.start/2.

 start_link()

Phoenix.LiveReloader.Channel

Phoenix's live-reload channel.

 Summary

 Functions

 child_spec(init_arg)

 handle_in(binary, map, socket)

 Callback implementation for Phoenix.Channel.handle_in/3.

 handle_info(arg, socket)

 Callback implementation for Phoenix.Channel.handle_info/2.

 join(binary, msg, socket)

 Callback implementation for Phoenix.Channel.join/3.

 start_link(triplet)

 Functions

 child_spec(init_arg)

 handle_in(binary, map, socket)

Callback implementation for Phoenix.Channel.handle_in/3.

 handle_info(arg, socket)

Callback implementation for Phoenix.Channel.handle_info/2.

 join(binary, msg, socket)

Callback implementation for Phoenix.Channel.join/3.

 start_link(triplet)

Phoenix.LiveReloader.Socket

The Socket handler for live reload channels.

 Summary

 Functions

 connect(params, socket)

 Callback implementation for Phoenix.Socket.connect/2.

 id(socket)

 Callback implementation for Phoenix.Socket.id/1.

 Functions

 connect(params, socket)

Callback implementation for Phoenix.Socket.connect/2.

 id(socket)

Callback implementation for Phoenix.Socket.id/1.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

